How can a line of people sort themselves by height? Or by age? It depends on what operations they are allowed to use. One might consider using “swaps” where two people in the line switch position with each other. One might also consider using “cycles” where someone at the end of the line moves to the beginning of the line.

This leads to an investigation of “permutations”, which is a fancy word for rearrangements of a set of objects. Some sets of permutations allow the people in the line to sort themselves in any order they choose, while other sets of permutations don’t.

Bart and Lisa compete in a two-day spelling contest. On the first day, Lisa gets a higher percentage right than Bart. And on the second day, Lisa gets a higher percentage right than Bart. So why did Bart win?? Continue reading Bart vs Lisa vs Fractions→

What do you mean you can’t do that in your head?! In this session we had fun learning how to do a lot of handy calculations. Each trick has a simple algebra rule behind it. Check out our handout! Continue reading Mental math, version two→

Last Saturday we had the first of four Boise Math Teachers’ Circle meetings for 2016–2017. The four-hour session contained an in-depth look at three different math problems: one in geometry, one in number theory, and one in topology. Continue reading Math Teacher’s Circle–Ellipses, coins, and fractals→

It is often necessary to add more than two numbers together. For example, you might have made 137 deposits to your bank account this year, and wonder how much you contributed in total. But is it possible to add infinitely many numbers together? The answer is that sometimes it is possible, and sometimes it isn’t! In this discussion we investigated when, why, and how! Continue reading Adding together infinitely many numbers→

The Boise Math Teachers’ Circle is excited to announce our program for the 2016–17 school year! The BMTC is open to K–12 mathematics educators. We will meet four Saturdays, for four hours each, to discover exciting math concepts and tackle challenging math problems together.

A circle has a center c and a radius r. The points on the circle are all a distance of exactly r units from c. What if we start with two fixed center points? The set of points on an ellipse have a fixed sum-distance to two center points c1 and c2 (called foci). An ellipse has kind of an oval shape. Ellipses occur in nature – the Earth’s orbit is not a perfect circle but rather an ellipse, with the Sun being just one of the two foci.

In this activity we investigated how to draw ellipses using pushpins and string. We also asked whether it is possible to have more than two fixed center points. Continue reading Ovals upon ovals!→

Suppose you are sending a crew of scientists to the moons of Mars: Phobos and Deimos. The scientists are botanists, geologists, and mathematicians, or any combination of the three. You want to divide the crew into to halves so that each moon gets an equal number of each scientists. When can this be done? Continue reading Mars moon mission→

The Boise Math Circle is excited to announce we’ll be continuing our program throughout the 2016–17 school year! The BMC is open to middle and high school students with some experience in algebra. If you like solving problems and want to learn more about the creative side of math, please consider applying. If you have a friend that does, invite them to apply too!

We will begin on Saturday morning, September 10, and meet approximately every two weeks. See our schedule of meeting dates.

Please help us recruit participants by letting your students know about the program. If you’d like attendance reports for your students (e.g., for extra credit), please send us an email. You’re of course welcome to join the sessions.

The card game SET is well-known amongst game players. Each card has four characteristics, and each characteristic has three outcomes. Twelve cards are placed face up, and players try to find a set of three cards with each characteristic all the same or all different. It turns out there is a lot of math going on! For example, are twelve cards enough to guarantee you will be able to find a set? If not how many do you need? Continue reading The game SET→